Journal of Organometallic Chemistry, 408 (1991) 233–239 Elsevier Sequoia S.A., Lausanne JOM 21698

The formation of alkenedithiocarboxylate and alkenecarboxylate ligands by insertion of CS_2 and CO_2 into ruthenium(II)-alkenyl bonds

Hassane Loumrhari, Josep Ros *, Ramon Yáñez

Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona (Spain)

and M. Rosario Torres

Instituto de Química-Física "Rocasolano" C.S.I.C., Serrano 119, 28006-Madrid (Spain)

(Received September 20th, 1990)

Abstract

The unsaturated alkenyl complexes $Ru(CO)Cl(RC=CHR')(PPh_3)_2$ react with CS_2 and CO_2 to give $Ru(CO)Cl(S_2CRC=CHR')(PPh_3)_2$ and $Ru(CO)Cl(O_2CRC=CHR')(PPh_3)_2$ complexes, respectively. The products are hexacoordinated-ruthenium(II) complexes containing alkenedithiocarboxylate or alkenecarboxylate ligands η^2 -coordinated to metal. In these reactions CS_2 and CO_2 insert into ruthenium-alkenyl bonds to form new chelated ligands. The structures of products and the nature of the alkenedithiocarboxylate and alkenecarboxylate ligands have been established from spectroscopic data (IR, ¹H and ³¹P NMR).

Introduction

The coordinatively unsaturated Ru(CO)Cl(RC=CHR')(PPh₃)₂ complexes react readily with coordinating molecules such as CO [1] or CN⁴Bu [2] to give octahedral complexes containing acyl ligands. The η^2 -acyl complex Ru(CO)Cl(η^2 -O=CCMe= CMeH)(PPh₃)₂ obtained from the reaction of the Ru(CO)Cl(CMe=CMeH)(PPh₃)₂ complex with CO is slowly transformed in methanol to the complex Ru(CO)Cl(η^2 -O₂CCMe=CMeH)(PPh₃)₂, the structure of which was confirmed by an X-ray diffraction study [1]. Reaction of CS₂ with some Ru(CO)Cl(HC=CRH)(PPh₃)₂ (R = Ph or ¹Bu) complexes gave Ru(CO)Cl(η^2 -S₂CCH=CRH)(PPh₃)₂ derivatives [3]. Other ruthenium(II) alkenyl complexes containing carboxylate [4,5] and dithiocarboxylate [6] ligands were recently prepared by our group by substitution of the chloride ligand by carboxylate or dithiocarboxylate anions. Because of the interest in insertions of CS₂ and CO₂ into metal-carbon bonds [7-9] a systematic study of the reactivity of these molecules with the coordinatively unsaturated complexes Ru(CO)Cl(RC=CHR')(PPh₃)₂ was undertaken.

0022-328X/91/\$03.50 © 1991 – Elsevier Sequoia S.A.

Results and discussion

Reaction with CS₂

In an earlier communication we described the reaction of Ru(CO)Cl-(HC=CHR')(PPh₃)₂ (R' = 'Bu, Ph) complexes with CS₂ in refluxing CH₂Cl₂ [3] to give complexes of the type Ru(CO)Cl(η^2 -S₂CCH=CHR')(PPh₃)₂. We have found that the Ru(CO)Cl(RC=CHR')(PPh₃)₂ complexes react with a five-fold excess of CS₂ in a CH₂Cl₂ to give Ru(CO)Cl(η^2 -S₂CCR=CHR')(PPh₃)₂ (R = R'=H, Me, Ph and CO₂Me; R = H and R' = Ph, 'Bu, SiMe₃, CO₂Me, CO₂Et) complexes in virtually quantitative yield. The red products are moderately air-stable, soluble in

Table 1

RC=CHR'	$IR(\nu(cm^{-1}))$			¹ Η NMR (δ (ppm))		
	CO	C=C	SCS			
HC=CH ₂ (1)	1945	-	1217 945	5.99 6.78 7.2–7.7	d, J 18 Hz, 1H d, J 12 Hz, 1H m, 6P+1H	
HC=CHCMe ₃ (2)	1954	_	1214 907	1.02s, 6.21 6.71 7.3–7.8	3Me d, J 16 Hz, 1H d, J 16 Hz, 1H m, 6Ph	
HC=CHSiMe ₃ (3)	1949	-	1218 922	0.9 6.02 6.80 7.3-7.7	s, 3Me d, J 12 Hz, 1H d, J 12 Hz, 1H m, 6Ph	
HC=CHPh (4)	1940	1571	1222 949	6.88 6.75–7.7	d, J 16 Hz, 1H m, 7Ph + 1H	
MeC=CHMe (5)	1949	1618	1335 990	1.44 1.55 5.90 7.2–7.7	d, J 8 Hz, 1Me s, 1Me q, J 8 Hz, 1H m, 6Ph	
PhC=CHPh (6)	1959	-	1305 923	5.37 6.4–7.8	s, 1H m, 8Ph	
HC=CCO ₂ Me (7)	1932 1690	1544	-	3.14 5.68 7.0–7.8 9.42	s, 1Me d, J 8 Hz, 1H m, 6Ph d, J 8 Hz, 1H	
HC=CCO ₂ Et (8)	1929 1655	1564	923	0.88 3.51 5.59 7.1–7.9 9.36	t, J 5.6 Hz, 1Me q, J 5.6 Hz, 1CH ₂ d, J 8 Hz, 1H m, 6Ph d, J 8 Hz, 1H	
MeO ₂ CC=CHCO ₂ Mc (9)	1940 1703	1558	923	3.20 3.30 4.91 7.3-7.6	s, 1Me s, 1Me s, 1H m, 6Ph	

IR and ¹H NMR data for complexes Ru(CO)Cl(S₂CRC=CHR')(PPh₃)₂

 CH_2Cl_2 but insoluble in diethyl ether, alcohols, and petroleum ether. The analytical and spectroscopic data are in accord with the addition of one molecule of CS_2 to the unsaturated alkenyl compound (Table 1).

The IR spectra of the complexes confirm the presence of the η^2 -coordinated alkenedithiocarboxylate group. The $\nu(S_2C)_{asym}$ and $\nu(S_2C)_{sym}$ bands are observed at ca. 1200 and 915 cm⁻¹, respectively, in most of complexes [10]. The $\nu(C=C)$ band is often obscured by other intense bands but is located at ca. 1544–1618 cm⁻¹. The intense $\nu(C=O)$ absorption is observed at ca. 1930–1959 cm⁻¹ and is shifted towards higher energies relative to the corresponding band in the unsaturated alkenyl complexes Ru(CO)Cl(CR=CHR')(PPh_3)_2.

The ¹H NMR spectra of Ru(CO)Cl(S₂CCR=CHR')(PPh₃)₂ complexes show the characteristic signals of the coordinated ligands. When R = H the signals of hydrogens in the $-CH_{\alpha}=CH_{\beta}R'$ group are observed as doublets with J(H-H) = 12-16 Hz, indicating a *trans*-disposition of the hydrogens. These signals are shifted from their positions in the unsaturated Ru(CO)Cl(CR=CHR')(PPh₃)₂ complexes [11,12]. The H_{β} hydrogens appear at ca. 6.7 ppm when R' = H, ¹Bu, SiMe₃ and Ph, and at ca. 5.6 ppm when R' is an ester group. The H_{α} signals are often hidden by the phenyl multiplets but are located at ca. 6.7–9.4 ppm. The low field values for H_{α} are characteristic of R' = CO₂Me and CO₂Et derivatives. The signal of the alkenyl proton in the disubstituted derivatives is observed at ca. 5–6 ppm.

The crystal structure of the Ru(CO)Cl(η^2 -S₂CCH=CHPh)(PPh₃)₂ complex revealed a cis-disposition of the PPh₃ ligands [3]. In related dithioformate complexes $MX(S_2CH)(CO)(PR_3)_2$ (M = Ru, Os; X = Cl, Br; R = Ph, Ph₂Me, PhMe₂), the cis-isomer was formed at room temperature but upon heating was converted into the trans-derivative [13]. In the case of other ruthenium(II) phosphoniodithiocarboxylate complexes $[RuH(CO)(S_2CPR_3)PCy_3)_2][BPh_4]$ (R = Et, Cy) the cis- and transisomers were formed at moderate temperatures [14]. On the other hand, the $cis \rightarrow trans$ isomerization did not occur in the case of the dithioformate complexes $IrCl_2(S_2CH)(PPh_3)_2$ [13]. The spectroscopic data for $Ru(CO)Cl(\eta^2-S_2CCR=CHR')$ -(PPh₃)₂ complexes synthesized at room temperature are identical to those obtained by prolonged reflux in CH₂Cl₂ [3], suggesting a similar stereochemistry. In order to confirm the position of the phoshines the ¹H-decoupled ³¹P NMR spectra of some complexes were recorded, and showed a single resonance at ca. 31 ppm for all of them. These results are in accord with equivalence of the two phosphines in a cis-disposition. The proposed structure for the $Ru(CO)Cl(S_2CCR=CHR')(PPh_3)_2$ complexes is as follows.

$$\begin{array}{c} OC \\ Ph_{3}P \\ Ph_{3}P \\ Ph_{3}P \\ Cl \end{array} S C - RC = CHR'$$

Reaction with CO_2

The reaction of CO_2 with Ru(CO)Cl(RC=CHR')(PPh₃)₂ complexes was examined under different conditions of temperature, pressure and solvent. A slow reaction was observed when the mixture was refluxed at atmospheric pressure in CH₂Cl₂, THF, or MeOH. After prolonged reflux intractable mixtures of organic compounds and complexes were formed. However, when solutions of the complexes

RC=CHR'	$IR(\nu (cm^{-1}))$			¹ H NMR (δ (ppm))		
	CO	C=C	OCO			
HC=CH ₂ (10)	1943	1539	1381	4.80 6.10 7.3–7.8	d, d, m,	J 12 Hz, 1H J 18 Hz, 1H 6Ph + 1H
HC=CHCMe ₃ (11)	1940	1538	1381	0.87 4.99 6.34 7.2–7.7	s, d, d, m,	3Me J 18 Hz, 1H J 18 Hz, 1H 6Ph
HC=CHSiMe ₃ (12)	1940	1571	1381	-0.66 5.45 7.2-7.9	s, d, m,	3Me J 16 Hz, 1H 6Ph+1H
HC=CHPh (13)	1941	1540	1381	7.88 6.7–7.7	d, m,	J 18 Hz, 1H 7Ph + 1H
MeC=CHMe (14)	1943	1540	1380	1.30 1.46 4.26 7.2–7.7	s, d, q, m,	1Me J 8 Hz, 1Me J 8 Hz, 1H 6Ph
PhC=CHPh (15)	1944	1541	_ 1380	5.36 6.2–7.8	s, m,	1H 8Ph
HC=CHCO ₂ Me (16)	1933 1697	1546	1371	3.45 5.39 7-7.7	s, d, m,	1 Me J 12 Hz, 1H 6Ph + 1 H
HC=CHCO ₂ Et (17)	1927 1682	1557	1371	0.89 3.83 7.1–7.9 9.60	t, q, m, d,	J 7.2 Hz, 1Me J 7.2 Hz, 1CH ₂ 6Ph J 17 Hz, 1H
MeO ₂ CC=CHCO ₂ Me (18)	1934 1712	1559	1375	3.39 3.61 4.89 7.3-7.7	s, s, s, m,	1Me 1Me 1H 6Ph

Table 2

IR and ¹H NMR data for complexes Ru(CO)Cl(O₂CRC=CHR')(PPh₃)₂

Ru(CO)Cl(RC=CHR')(PPh₃)₂ (R = R' = H, Me, Ph and CO₂Me; R = H and R' = Ph, ^tBu, SiMe₃, CO₂Me, CO₂Et) in a CH₂Cl₂/MeOH mixture were treated in an autoclave with 1 atm of CO₂ for 1 h, a new family of green products was obtained. The complexes are moderately stable to air and are soluble in CH₂Cl₂ but insoluble in diethyl ether, alcohols and hydrocarbons. The elemental analyses and the spectroscopic data are in accord with formation of complexes of the type Ru(CO)Cl(η^2 -O₂CCR=CHR')(PPh₃)₂ which contain an alkenecarboxylate ligand coordinated through two oxygen atoms (Table 2). Other alkenecarboxylate ligands were obtained previously by coupling of ethylene with CO₂ in Mo and W complexes [15].

The solid IR spectra of Ru(CO)Cl(η^2 -O₂CCR=CHR')(PPh₃)₂ complexes display the typical bands of the alkenecarboxylate ligand. The ν (O₂C)_{sym} band appears at ca. 1380 cm⁻¹, and the $\nu(O_2C)_{asym}$ and the $\nu(C=C)$ band appear at ca. 1540 cm⁻¹. Similar IR spectra were obtained for the recently reported 3,3-dimethylacrylate derivatives [5]. The $\nu(O_2C)$ and $\nu(C=C)$ bands are observed at lower energies than those for other carboxylate alkenyl Ru(II) complexes [4]. The $\nu(C=O)$ absorptions appear at ca. 1927–1943 cm⁻¹, near the positions of the same bands for Ru(CO)Cl(n^2 -S₂CCR=CHR')(PPh₃)₂ complexes.

The ¹H NMR spectra of the complexes confirm the coupling of the alkenyl ligand with one molecule of CO₂. Thus, in the case of the terminal alkenyl derivatives the H_a and the H_β signals are observed at < 6.3 ppm and at ca. 4.9–5.5 ppm, respectively, as doublets with J(H-H) = 12-18 Hz, indicating a *trans*-disposition of the hydrogens. For the complexes containing disubstituted alkenyl ligands, the =CHR' proton appears at ca. 4.3–5.4 ppm. The ¹H-decoupled ³¹P NMR spectra of some Ru(CO)Cl(η^2 -O₂CCR=CHR)(PPh₃)₂ complexes at room temperature display a single peak at 37.0–37.8 ppm, suggesting equivalence of the two PPh₃ ligands. The Ru(CO)Cl(η^2 -O₂CCR=CHR')(PPh₃)₂ complexes decompose slowly in solution showing, after some hours, ³¹P NMR spectra with signals of the hydride complex Ru(CO)ClH(PPh₃)₃ and of other, unknown products. These spectroscopic data are consistent with the two possible structures for the complexes depicted below:

Experimental

The C and H elemental analyses were performed with a Perkin–Elmer 240B analyzer. The ¹H NMR spectra were recorded on a Bruker AM 400 spectrometer in CDCl₃ solution. The ¹H-decoupled ³¹P NMR spectra were recorded on the same instrument in CDCl₃ solutions with aqueous 85% H₃PO₄ as external reference. The IR spectra were recorded on a Perkin–Elmer 1710-FT apparatus with KBr pellets.

The syntheses of the complexes were carried out under nitrogen by Schlenk techniques. The $Ru(CO)Cl(RC=CHR')(PPh_3)_2$ complexes were prepared by previously described methods [11,12,16].

Preparation of $Ru(CO)Cl(\eta^2-S_2CRC=CHR')(PPh_3)_2$ complexes

Carbon disulphide (5 ml) was added with stirring to 15 ml of a CH_2Cl_2 solution of 0.2 g of Ru(CO)Cl(RC=CHR')(PPh₃)₂. The mixture, which turned red, was stirred for 4 h at room temperature, and then evaporated to dryness *in vacuo*. The residue was dissolved in 10 ml of CH_2Cl_2 and the product quantitatively precipitated by slow addition of petroleum ether. The red complexes can be recrystallized from CH_2Cl_2 /MeOH mixtures.

Ru(CO)Cl(S₂CHC=CH₂)(PPh₃)₂ (1). Found: C, 60.63; H, 4.21. $C_{40}H_{33}$ -ClOP₂S₂Ru calc.: C, 60.44; H, 4.24%.

 $Ru(CO)Cl(S_2CHC=CH^{t}Bu)(PPh_3)_2$ (2). Found: C, 62.28; H, 4.68. $C_{44}H_{41}$ -ClOP₂S₂Ru calc.: C, 62.87; H, 4.24%.

Ru(CO)Cl(S₂CHC=CHSiMe₃)(PPh₃)₂ (3). Found: C, 59.74; H, 4.79. $C_{43}H_{41}$ -ClOP₂S₂SiRu calc.: C, 60.28; H, 4.58%.

Ru(CO)Cl(S₂CHC=CHPh)(PPh₃)₂ (4). Found: C, 63.62; H, 4.30. C₄₆H₃₇-ClOP₂S₂Ru calc.: C, 63.41; H, 4.38%. {¹H}-³¹P NMR: δ 31.63 (s) ppm.

 $Ru(CO)Cl(S_2CMeC=CHMe)(PPh_3)_2$ (5). Found: C, 64.41; H, 4.56. $C_{44}H_{37}$ -ClOP₂S₂Ru calc.: C, 64.47; H, 4.42%.

Ru(CO)Cl(S₂CPhC=CHPh)(PPh₃)₂ (6). Found: C, 66.12; H, 4.38. C₅₂H₄₁-ClOP₂S₂Ru calc.: C, 66.14; H, 4.29%. {¹H}-³¹P NMR: δ 30.54 (s) ppm.

 $Ru(CO)Cl(S_2CHC=CHCO_2Me)(PPh_3)_2$ (7). Found: C, 59.32; H, 4.16. $C_{42}H_{35}-ClO_3P_2S_2Ru$ calc.: C, 58.36; H, 4.00%.

Ru(CO)Cl(S₂CHC=CHCO₂Et)(PPh₃)₂ (8). Found: C, 59.75; H, 4.32. C₄₃H₃₇-ClO₃P₂S₂Ru calc.: C, 59.50; H, 4.37%. {¹H}-³¹P NMR: δ 31.13 (s) ppm.

 $Ru(CO)Cl(S_2CMeO_2CC=CHCO_2Me)(PPh_3)_2$ (9). Found: C, 58.18; H, 4.11. $C_{44}H_{37}ClO_5P_2S_2Ru$ calc.: C, 58.10; H, 4.06%.

Preparation of $Ru(CO)Cl(\eta^2 - O_2CRC = CHR')(PPh_3)_2$ complexes

A solution of 0.2 g of Ru(CO)Cl(RC=CHR')(PPh₃)₂ in 20 ml of a 1:1 mixture of CH₂Cl₂ and MeOH was placed in an autoclave which was then charged with 1 atm of CO₂. After 1 h stirring at room temperature the green solution was transferred to a suitable vessel and evaporated to dryness *in vacuo*. The residue was dissolved in a minimum of CH₂Cl₂ and the crude product precipitated by addition of petroleum ether. The products, which were green, were purified by three washings with petroleum ether, then dried *in vacuo*. The yield was > 60%.

Ru(CO)Cl(O₂CHC=CH₂)(PPh₃)₂ (**10**). Found: C, 63.20; H, 4.38. $C_{40}H_{33}ClO_3P_2$ calc.: C, 64.80; H, 4.90%.

Ru(CO)Cl(O₂CHC=CH¹Bu)(PPh₃)₂ (11). Found: C, 64.74; H, 5.07. C₄₄H₄₁ClO₃P₂Ru calc.: C, 64.44; H, 5.35%, {¹H} ³¹P NMR: δ 37.23 (s) ppm.

Ru(CO)Cl(O₂CHC=CHSiMe₃)(PPh₃)₂ (12). Found: C, 62.04; H, 4.97. C₄₃H₄₁ClO₃P₂SiRu calc.: C, 61.47; H, 5.02%. {¹H}-³¹P NMR: δ 37.19 (s) ppm.

Ru(CO)Cl(O₂CHC=CHPh)(PPh₃)₂ (13). Found: C, 66.06; H, 4.47. C₄₆H₃₇ClO₃P₂Ru calc.: C, 66.40; H, 4.90%. {¹H}-³¹P NMR: δ 37.01 (s) ppm.

Ru(CO)Cl(O₂CMeC=CHMe)(PPh₃)₂ (14). Found: C, 63.99; H, 4.74. C₄₂H₃₇ClO₃2P₂Ru calc.: C, 64.17; H, 5.17%. {¹H}-³¹P NMR: δ 37.39 (s) ppm.

Ru(CO)Cl(O₂CPhC=CHPh)(PPh₃)₂ (15). Found: C, 67.13; H, 4.54. C₅₂H₄₂ClO₃P₂Ru calc.: C, 68.15; H, 5.25%. {¹H}-³¹P NMR: δ 37.45 (br) ppm.

 $Ru(CO)Cl(O_2CHC=CHCO_2Me)(PPh_3)_2$ (16). Found: C, 61.65; H, 4.32. $C_{42}H_{35}ClO_5P_2Ru$ calc.: C, 61.82; H, 5.09%.

Ru(CO)Cl(O₂CHC=CHCO₂Et)(PPh₃)₂ (17). Found: C, 62.05; H, 4.49. C₄₃H₃₇ClO₅P₂Ru calc.: C, 61.89; H, 4.69%. {¹H}-³¹P NMR: δ 37.48 (s) ppm.

 $Ru(CO)Cl(O_2CMeO_2CC=CHCO_2Me)(PPh_3)_2$ (18). Found: C, 60.03; H, 4.26. $C_{44}H_{37}ClO_7P_2Ru$ calc.: C, 60.73; H, 5.02%.

Acknowledgements

Financial support of the DGICYT of Spain (Project No. PB87-0201-C03-03) is gratefully acknowledged. H.L. thanks the Ministère de l'Education Nationale du Maroc for a fellowship.

References

- 1 M.R. Torres, A. Perales, H. Loumrhari and J. Ros, J. Organomet. Chem., 384 (1990) C61.
- 2 J. Montoya, A. Santos, A.M. Echavarren and J. Ros, J. Organomet. Chem., 390 (1980) C57.
- 3 M.R. Torres, A. Perales and J. Ros, Organometallics, 7 (1988) 1223.
- 4 M.R. Torres, A. Perales, H. Loumrhari and J. Ros, J. Organomet. Chem., 385 (1990) 379.
- 5 H. Loumrhari, J. Ros, M.R. Torres and A. Perales, Polyhedron, 9 (1990) 907.
- 6 H. Loumrhari, J. Ros and M.R. Torres, Polyhedron, accepted for publication.
- 7 A. Behr, in Carbon Dioxide Activation by Metal Complexes, VCH Publishers, Weinheim, 1988, p. 46.
- 8 G. Wilkinson, F.G. Stone and E. Abel (Eds.), Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, 1982, Vol. 8, Ch. 50.4, p. 225.
- 9 A. Behr, Angew. Chem., Int. Ed. Engl., 27 (1988) 661.
- 10 P.V. Yaneff, Coord. Chem. Rev., 23 (1977) 183.
- 11 M.R. Torres, A. Vegas, A. Santos and J. Ros, J. Organomet. Chem., 326 (1987) 413.
- 12 M.R. Torres, A. Vegas, A. Santos, J. Ros and X. Solans, Organometallics, 6 (1987) 1091.
- 13 S.D. Robinson and A. Sahajpal, Inorg. Chem., 16 (1977) 2718.
- 14 T.R. Gaffney and J.A. Ibers, Inorg. Chem., 21 (1982) 2062.
- 15 R. Alvarez, E. Carmona, A. Galindo, E. Gutierrez, J.M. Marín, A. Monge, M.L. Poveda, C. Ruiz and J.M. Savariault, Organometallics, 8 (1989) 2430.
- 16 M.R. Torres, A. Vegas, A. Santos and J. Ros, J. Organomet. Chem., 309 (1986) 169.